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ABSTRACT
|
: " A mathematical model of the range-gate pulloff electronic counter-
measure is developed based on a statistical model for the radar return from a
» slowly fluctuating point target in the presence of white noise. It is shown
| that the same model is also appropriate for describing velocity-gate pulloff.
\ An optimization problem is formulated which determines the jammer delay
) inducing the maximum bias in the range estimation processor of the victim
j:y radar. These results are then applied to the specific case in which the
.\d transmitted signal is a gaussian pulse. The optimal delay and bias are
s calculated as functions of the signal-to-jammer power ratio and the pulse
‘ width of the transmitted signal.
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K- RESUME
:):'
- Un modale mathématique de contre-mesure E&lectronique par rétablissement
;:) des portes distance est &laboré a partir d'un mod2le statistique applicable
" aux &chos radars provenant d'une cible ponctuelle qui fluctue lentement en
f:. présence de bruit blanc. Il est d&montré que le m@me mod&8le peut Egalement
e décrire le rétablissement des portes vitesse, Un probl2me d'optimisation est
formulé pour déterminer le retard du brouilleur introduisant un biais maximal
dans le calcul de la distance par le processeur du radar victime. Les
Iy résultats sont ensuite appliqué&s au cas particulier ol le signal transmis est
o une impulsion gaussienne. Le delai maximum et le biais sont calculé&s en
- fonction du rapport des puissances signal/brouilleur et de la durée
e d'impulsion du signal transmis,
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1.0 INTRODUCTION

DREO has a continuing interest in simulating hypothetical engagements
between fighter aircraft and one or more surface-to-air missiles. One of the
aims in developing such simulations might be to discover whether overall
performance of the aircraft can be enhanced by providing it with an electronic
countermeasures (ECM) suite. 1In particular, twn of the countermeasures which are
frequently encountered in the open literature [.] are range-gate and
velocity-gate pull-off. In this technical note we will propose a simple model
which can be used to describe either of these phenomena. We will then use this
model to derive some general "rules of thumb™ regarding the possible performance
and response time of a hypothetical ECM system which uses these countermeasures.

2.0 BASIC RADAR MODEL

We shall first outline a statistical model for a slowly fluctuating point
target in the case of white bandpass noise. Since this model is described in
Chapter 9 of [2] in some detail, we shall dispense with derivations and formal
proofs, and restrict our presentation to a summary of the principal assumptions
and results. In particular, we will make the following basic assumptions:

(i) the aircraft can be modelled as a number of reflecting surfaces,
such that the return from each of these can be described as the
product of an independent complex gaussian random variable and a
time-varying (complex-valued) sinusoid. Moreover, we assume that
there are sufficiently many reflecting surfaces that the central
limit theorem can be applied to the sum of reflected signals;

(ii) the reflection process is linear and frequency-independent;
(111) the change in time scale of the complex envelope due to non-zero
target velocity can be ignored (i.e. only the Doppler shift needs to

be considered);

(iv) all other stochastic variations in the radar returns can be modelled
as additive white bandpass noise,

Subject to these assumptions, we can derive the following mathematical
description of the received waveform in the presence of a moving target:

s(t) = V2 Re [r(t) exp (jwqt)] (2.1)
where r(t) 1s defined by

r(t) = bg VEg f(t- ug) exp (jwg t) + n(t) (2.2)
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and the following notation and conventions ai: adopted:

(1) f(t) is the complex envelope of the transmitted signal
(2) we is the carrier frequency

(3 ug is a delay proportional to target range

(4) wg is Doppler shift due to relative target velocity
(5) Eg is the transmitted energy

(6) bg 1s a zero-mean complex gaussian random variable

7 E(bgbg*) = 2 V% (where the value of Vg depends on

antenna gains, path losses, target radar cross-section, etc., "*"
denotes complex conjugate, and E( ) indicates expected value).

(8) n(t) is an independent zero-mean white complex gaussian random
process
and
(9 E(n(t) n*(t)) = Ny & (t-8)

where we use the notation
n*(t) = (n(t))*.

Clearly we can work with either (2.1) or (2.2); for convenience, we will
usually use (2.2) in the remainder of this paper.

We shall restrict our attention to the case of transmission of a single
pulse. For this case, ug and wg may be considered as constants; for
algebraic simplicity, we can in fact assume without loss of generality that
ug = wg = 0 (2.3)
Hence we can rewrite (2.2) as

r(t) = bg JVEg f(t) + n(t) (2.4)

According to [1], Range-Gate Pulloff 1s a self-screening ECM technique
for use against pulsed, noncoherent, automatic range-tracking radars. The
victim radar’'s signal is received, amplified, and then retransmitted with a
minimum delay, in an attempt to provide a strong beacon signal which
"captures” the victim's range-gate. The time delay in the repeated signal 1is
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then successively increased on a pulse-by-pulse basis, creating a series of
false targets. When the victim range-gate has been moved sufficiently far
away from the true target position, the ECM repeater is turned off, and the
victim radar will break its range track.

In the context of our radar model (2.4), we can describe the deception
pulse by adding an extra term consisting of a delayed and amplified version of
the complex envelope f. Since the deception pulse will in general be out of
phase with the transmitted signal, we will also include a random phase
factor. Indeed, without increasing the computational complexity, we can
generalize the random phase component to be a complex gaussian random
variable. Hence we obtain.

r(t) = bg VEg f(t) + bg VEq £(t-T) + n(t) (2.5)

where T is the delay in transmitting the deception pulse, and by is an
independent, zero-mean complex gaussian random variable such that

E(bgbg*) = 2 Vi (2.6)

and

E(bdbd) = E(bsbs) = E(bsbd*) = E(bdbs*) = 0 2.7)

We can model the action of the radar receiver in estimating the true
value of the return signal as a time-invariant linear filter with impulse
response h(t). For the moment, we will only assume that h is an L2(R)
function (i.e. is square-integratable). We will be more specific as to other
properties of h later. Denoting the receiver output as T(t), we obtain from
(2.5)

Ht) = by /g £(t) + by /Eq £(t-T) + n(t) (2.8)

where

£(8) = (E*R)(t) = 5 £(u) h(t-u) du

n(t) (n*h) (t)

Whether "*" denotes complex conjugate or convolution will usually be obvious.
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Now, we define thc expected power envelope of the filtered return signal
to be

P(t;T) = E(x(t) m*(t)) = (bg /Eg £(t) + by /By £(t-T) + n(t))

x (bg'Eg £(t) + by VEq £(t-T) + n(t))*

= 2V3  Eg f(E)EX(t) + 2V3 Eq f(t-T)f*(t-T)

+ E(n(t)n*(t)) (2.9) h

This last follows from (2.6), (2.7), and assumption (7) above. We now wish to
evaluate the last term in (2.9):

E(n(t)n*(t)) E [ n(u) h(t-u) du)[s n(s) h(t-s) ds]*

R R

]

S 7 h(t-u) h*(t-s) E(n(u)n*(s)) duds
R R

[]
‘\i

h(t-s) J Ng $(u-s) h*(t-u) du ds
R R (assumption (9))

= No / h(t-s) h*(t-s) ds
R

= Ngo / h(s) h*(s) ds (translation invariance of
R Lebesque integral)

= No Il h \]% (2.10)
Substituting (2,.10) into (2.9), we obtain

P(GT) = 2v3 Bg E(0)ER(e) + 2V Bq £(e-DIEX(e-1) + u ([ | D)
: 2.11

As is pointed out in [3], we can model the estimation of range by the
tracking radar as a simple optimization problem. In effect, we claim that
those values of t at which P(t;T) attains local maximal will correspond to
estimates of target ranges. Thls models leading edge tracking in the sense
that it analyzes centroid biasing caused by the addition of the deception
pulse. We note in passing that thils algorithm would not accurately model
tracking gates with sophisticated statistical signal processing or threshold
as well as differencing logic.
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We have not thus far committed ourselves to a choice of the receiver
impulse response h. If we wished to extend our analysis to include a more
complex estimation model, then a matched filter or a filter based on estimates
of the statistical properties of the interfering signals might be
appropriate. However, given that we are using the simple estimation model
described above, we will assume that the impulse response of the radar
receiver is (nearly) a delta function. In effect, this corresponds to a
receiver which estimates the target range based only on the return signal
without doing any signal processing.

E|

t
by

Taking h ae a delta function appears to conflict with our earlier assumption
that h L2(R). However, we will now show that there is a sequence of L2(R)
functions, denoted dh(t), which "look like"” delta functions for sufficiently
small values of h.

Let dp(t) be defined by

dp(t) = % a () (2.12)

L
h

where a(t) is any non-negative bounded continuous function with compact
support contained in the interval [-1,1]. Assume that the total mass of a is
1. Then following the same style of argument as is used in (4), Chapter 6, we
can show that for any function £,L2(R), (dp *f) converges to f both

pointwise and uniforr® 1in L2(R) as h 0. For consider:

[(dp *6)(0) - £()17 = | ;L dhE(e-u) du - - £(e) a(u) du|?
Rh h R

| fa(s) £(t-hs) ds - [ £(t) a(s) ds|”
R R
(using the change of variable s = u/h)

[ / [£(t-hs) - £(t)| a(s) ds)2 (2.13)
R

[ s [£(t~hs) - £(t)|2 a(s) ds][{ a(s) ds])
R (by the Schwarz inequality)

'lall [ [f(t-hs) - £()|2 ds]

a i} w? (£,h) (2.14)




........

_6_
where w(f,h) is the oscillation of f: L2 (R), defined by
w(f,h) = sup ( / [£(t=8) - £(s)| 2 gg)t/2
sl <h R
and ! lal |, denotes the maximum value of a. We note from [4] that w(f,h)-0 as

h,0. This proves that (dy *f) converges pointwise. Now, using (2.13) and
integrating both sides we obtain

I(dp *£)(t) - £() |2 dt = s s |f(t-hs) - £(t)] 2 al(s) dtds
< o w2(f,h) [ a(s) ds
(using §efinition of oscillation)
< w2(£,h) (2.15)

which proves convergence in L2 (R).

We are now in a position to state the problem we wish to consider: given
the model as described, choose the value of the deception delay T which
achieves the maximum range deception while maintaining (statistically)
non-resolvable signal and deception pulses. Intuitively this problem will
admit one or more solutions. Since we can assume that the signal envelope
f(t) has been designed to have only one maximum, very small values of T will
still generate only one maximum. On the other hand, very large values of T
will certainly result in a power envelope which resolves the return signal and
deception pulse as two distinct targets. Clearly, there must be some "happy
medium”,

According to our model, the estimated target range(s) will correspond to
the maximum or maximal of the function P(t;T) defined in (2.11). Since the
last term in (2.11) is constant (depending only on the choice of the impulse
response of the receiver filter and the spectral height of the noise), we can
effectively disregard it. Moreover, we showed above that we can choose the
impulse response of our receiver filter so as to make the function f(t) as
close as we like (pointwise) to the function f(t), by choosing the parameter h
sufficiently small. This implies that the maximum of the function P(t;T)
defined by

P(t;T) = 2VZ Eg £(O)f*(t) + 2V] By £(t-T)f*(t-T) (2.16)

will also maximize é(t;T). It 1s this function we will work with in section
4.0,
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3.0 VELOCITY-GATE PULLOFF

As indicated in the introduction, we wish to extend our analysis to
include the velocity-gate pulloff ECM as well. As described in (1), this is
another self-screening ECM technique. The signal from the victim radar is
received, amplified coherently, and retransmitted to provide a strong beacon
which captures the velocity-gate of the radar. The Doppler frequency of the
deception signal is then moved away from the true target Doppler frequency at
a rate that does not exceed the victim radar's tracking capability. At some
point the ECM repeater is turned off, causing the radar to break track. It
should be noted that if velocity-gate pulloff is used in conjunction with
range-gate pulloff, the rate at whic the false range is changed must equal
the false velr :ity. Although it may be a subject of future research, the
analysis presented in this paper cannot be applied to simultaneous use of the
two countermeasures.

Referring to the basic equations (2.2) and (2.4) of the last section, we
see that a possible model for velocity-gate deception 1s given by

——

r(t) = bg Eg £f(t) + by vEq £(t) exp (jwg t) + n(t) (3.1)

under the same assumptions as were posed in the last section.

Now, we will denote the Fourier transform of a function f(t) by F(jw) or
by F(f). Recalling that

FOECE) exp(jwgt)) = F(jiw - jwy)
we obtain (formally) from (3.1)

R(jw) = bg +Eg F(jw) + bg +Egq F(jw = jwg) + N(jw) (3.2)
Now, from (3.1) and Plancherel's Theorem, the energy in the return signal is

CE(r(t)r*(t)) dt = . E(R(IWIR*(jw)) dw (3.3)

R

0Of course, the left hand side of (3.3) will not converge; however, using
an argument similar to that of the previous section, we can overcome this
technical difficulty. Hence, if we define
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S(w) = E(R(JwWIR*(jw))

= 2VZ Eg F(FWF*(3w) + 2V Eq F(3(w-wg))F*(j(w-wgq)) + N, (3.4)

then we can interpret S(w) as the expected spectral power density of the
return signal. Following the same line as was taken in the last section, we
now claim that those values of w at which S(w) attains local maximal will
correspond to estimates of target velocity. Since the constant term in (3.4)
due to the spectral height of the additive noise will not affect the position
of any maximum values, we can effectively ignore it. Consequently, the form
of (3.4) is identical to that of (2.16).

In the next section we will show how our model can be used to determine
the optimal bias for the range-gate problem, i.e. equation (2.16). However,
as we have shown, the results may equally be applied to the velocity-gate
problem, although we shall not explicitly do so in this paper.

4.0 DETERMINING OPTIMAL BIAS

In order to 1llustrate the utility of some of these i1deas, let us assume
that the transmitted signal is a gaussian pulse, i.e.

2
f(c) = (;%101/4 exp (ify) (4.1)
S

Thus from (2.16) we obtain

P(t;T) = 2v2 Eg (777 )1/2 exp(-t2) + 2V} Eq (“‘—'2‘)1/2 exp( - (t— )2)
TZ s
s
= Eg exp(-t2) + By exp(-(t—T)z) (4.2)

Now, for each value of T, the value(s) of t which maximize P(t;T) must satisfy

o P(t3T) = -%; E exp(—%z) - 2(t=T) éd exp(-(t—T)z)
t 8 T2 Wi T2 (4.3)

Simplifying (4.3) we obtain

ot o= exp(t2 - (£=1)2) = exp’ 1 (2tT - T2)} (4.4)
T-t T3 T3 12
._ ,f&f NNy ._I..‘.nfuI.J - "~‘-""x‘n"u:-"a"z”n’n"u'."u'u’u ~'u'.’n”n‘u”n’.fx'a“u’n"u”a"u:‘"z’A"‘.
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f where

o (Eg/Eq) =

YO

oK We note that since the right-hand side of (4.4) is always strictly

positive, and since we can assume without loss of generality that t . 0 , we
aaY must have

s
N ‘
o T-t ~ 0 or t - T (4.5)
»
h
g
" Let us designate the value of t at which a local maximum occurs by t%,
vy Then in order to guarantee that t* satisfying (4.4) is a local maximum (rather
AN than a local minimum), we impose the further necessary condition
S
%
5 P (6;T) | <0
"‘: R t=t
Y
RS
.:_\ N . 2 9 2
o 2 exp(=t*T) [—E% + 2L t*~ - Ed exp ,t*- - (t*-T)~,
p T. T T. i T ‘ (4.6)
. . S S S S S
>
b . 2 2 >
. + 2E, (t*=T)" exp £t - (t*=-T)~, ] -~ O
WA d e Yo T
» s s s
"

Substituting (4.4) into (4.6) and simplying, we obtain

;-
- 2E. exp(-t*2) [~1 + 2t*2 —t* + 2(T-t*)t*] . 0
(ot TZ T3 T T-t* T
N S
®
= 2Eg  exp(=t*2) [ =T + 2Tt*] < 0 (4.7)
o TZ T4 T-t* T§
;G Since the leading factor in (4.7) 1is already strictly positive, it is
." clear that the sign of the left-hand side in (4.7) depends only on the
L expression in square brackets. Moreover, since T is a delay, we can also
! o assume that T -~ 0, resulting in the following condition which is equivalent to
- (4.7):
..-‘-.|
,'-‘. <
+ i)
e
v -1 +2t*~< 0 (4.8) h
A T-t* Ts

O A
S AN
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2tx2 - 2e*T + T2 5 0 (4.9)

where we have used (4.5) in (4.8) and simplified. We note that for

(T/Tg) < /2, then (4.9) will be true for all t*<{0,T]. Hence, for all
choices of T such that (T/Tg) < /2, we are quaranteed there will be a single
local maximum, hence t* will designate a global maximum. We can interpret
this as meaning that only one target will be resolved by the victim radar.
However, it is unclear how much larger T can be chosen such that the radar
will continue to resolve only one target. This obviously will depend on the
actual value(s)_ of t* which solve (4.4), which will in turn depend on the
"power ratio” (Eg/E4q), and on the "pulse width" Tg.

Now, in order to resolve two peaks, there must be some value of T which

yields a "flat spot”, i.e., a pair (t*,T) such that ;

3P(tx,T) = 52P(¢x,T) = 0
it 3t2

From (4.4) and (4.9), this gives the pair of equationms,
2e%2 - 2exT + T2 = O (4.10)

and

tx = 1 (2t*T - T2) (4.11)
exp {E_Z }

o
T-t* 2

To simplify the solution of this pair of equations, we introduce a
“trick” based on (4.5). Since we know that t* <T, there is a number r
(possibly depending on T) such that

0- -1 and ST = t* (4.12) |

Substituting (4.12) into (4.10) we obtain

2212 - 212 + 7 =0
(=) = 12 (4.13)
2T

»
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Substituting (4.12) into (4.11) yields

(1-7)

.

= exp { (2T2/T2)(» - 1)}

Now combining (4.13) and (4.14) gives

exp (7-3) = gi(™)
)

Hence for a given value of o, we can solve for 7 = gIl (@) in
(4.15), and then use (4.13) to find the value of T, say Ty(a), at which
targets will be resolved. Figure 1 shows a graph of gj; we note that
gIl ) is defined and one-to-one for all a > 0.

However, what we are seeking 1s not necessarily T, (a), but rather the
value of T (less than or equal to T, (a)) which gives rise to a single
target with the largest "bias”™ value t*, In order to find a necessary
condition which defines these values of T and t*, let us differentiate (4.4)
implicitly with respect to T:

- at* (1-t7) = 1 (2T + 2t* - 2T) exp{ L (2t*T -T2)}  (4.16)
(T-t#)2 T2 Eé

where t = d t*(T). Substituting (4.4) into (4.16) yields
dT

5

-
LS

A

PSPy

a t°T - gt* = _2_{t’T + t* - T

o tX
(T-t%) T2

}{T—t*

}

-
u¥
» a

AN @

© T - 2Tt* (T-t* = t*x{]1 - T-t*)2 4,17
t EEE (T-t )} t*{ 2, (T-t*)4} ( )

ML

Hence, we deduce that

4 t*(T) = x*{1 - (2/T3)(T-t*)?} (4.18)
T -_2 T t*(T-t*
dT [ T2 (T-t*)]
To find a (local) maximum, we let d t*(T) = 0 in (4.18), obtaining
dT

ERRN

o R AANNT

t* =0 or 1- (2/T3)(T-t*)2 =0
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Ve
‘a8%
M Since we have assumed that t* - 0, we are left with
'M.‘
P W
) ::__: T - t*x = TS//f (4.19)
o

)
Now, combining (4.19) with the basic equation (4.4) yields

S

o v /2 tk = exp {(t*/Tg)2 - 1 )

o Tg R
EX o s Z
P"
B v= 1 (Tg) exp {(t*/Tg)2 -1} = go(t*) (4.20)
N /2 TTER 2 Tg
o

.-J- For any value of o« » 1, there are two numbers t* such that

‘_’.' t* = g}_’l (x), as shown in Figure 2. For each of these (4.19) can be used
ﬁ-j to calculate corresponding values of T, say T*(,) and Ta(y), such that Tg<T¥.
oC! However, as shown in Figure 3, T*(«) is actually greater than T,(a),
}: i.e., 1f T = T*(x) then two targets will be resolved. Hence we only use that
(M portion of gy to the left of the dotted line in Figure 2 to find t*,

o If « <1, then by inspection there is no solution for (4.20), and hence no
o value of T such that d t*(T) = 0. Referring to (4.18), if we assume that

:::-i T<1 Tg, we have dT

o =y

= 2

X
9 t*1 - (2) (T-t*)% . t*{1 - (2)T% .0 (4.21)
(LN R
o, 2 2
s s s
S

)

e ]

2
‘e " and

o

A

7 T- () TexT-t) . T (1-C2) T2} .0 (4.22)
Sl T§ Tg
be.
I
o

recalling that 0- t* - T. Hence,

‘}?
Sr
_;}: d t*(T) - 0 for T « [0, Tg ] (4.23)
. dT Y
'\j:"\
%
Y j":

‘o
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Now if .~ 1, since d t*(T) # 0, we can in fact deduce that
dr
d tX(T) 0 forT - [0, Tp (x )], a <1 (4.24)

and hence the value of T which maximizes t*(T) is T, (u ).

We will make one more observation before presenting a complete solution.
Recall that T.( ) for the case r - 1 can be found by solving (4.13) and
(4.15), that is,

(1- ) = 1 (Tg/Tp)? (4.25)

an:

1 ({j._) =  exp ‘(X’Ll_. (4.26)

Now, let ¢ =1 and s = 1- 1in (4.25) and (4.26), to obtain the pair of
equations

(1-8)s

]
—
~~
—3

;]
~
3

la]

p—
~No

(4.27)

and

= gy (s) (4.28)

But 1, hernce (4.27) and (4.28) are solved by T, ( () = Ty ()
= Tr(l/') from our revious work.

-
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A
N
:;
3 .
e,
.'1',
%f Now, in order to find the bias t* induced by the delay T,(a ), we need
? to solve equation (4.14) with T = Ty(a ). We note that there must be two
. values of © which solve (4.14), i.e. 7 = gil (a ), which corresponds to
'\4 the "flat spot” which defines Ty( ), and the value of / which corresponds
+ to the maximum bias t*. Define the function g3 by
b
o vo= 1= exp 2AT/TH2Z (P - v ) = g3(Tp) (4.29)
2 .
193
Y
o and define g4( ») by
s
o gaC ) = {7 [u = g3(TpC 039 ), « # g1 (F)) (4.30)
w
ﬂ; Then g4 is defined and single-valued for all « <1, Figure 4 shows a graph
of g3 for representative values of (T./Tg) superimposed on a graph of
g1. Figure 5 shows a graph of g4.
f Hence from (4.12) we conclude
; N t* = g4( 1) Tp(x ) = g4t ) Tp(1/x) (4.31)
“
.‘
..’\
o
o We have now obtalned a complete solution for the problem of choosing a
o delay so as to maximize the bias induced in a victim radar. The solution
X, divides naturally into two cases:
.~
~ ,.
o5 (1) + = Eg/Eq .1 Optimal bias = topr = Tg g31( )
‘-: o
; Optimal delay = Topt = topt t TS//E
T = Tg (g31(x) +% ) (4.32)
-t 12
o (11) . = Eg/Eq -1 Optimal delay = Topy = 1 Tg [ 1 ]1/2
. /f 1=
.f where = g7l () or = = g71(1/.)
>,
*'l - -
;t} Optimal bias = topt g84(y) Topt
1)

= Graphs of the solutions (Tgpe/Tg) and (topt/Tg) are shown in Figure 6.
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6.0 CONCLUSIONS

We set out to derive some basic "rules of thumb” regarding the possible
performance and response time of a hypothetical ECM system which used the
range—gate (or velocity-gate) pulloff countermeasure. Our analysis has been
based on a standard statistical model for the radar return from a slowly
fluctuating point target in the presence of white noise. Using our model,
which also included a deception signal representing the range-gate pulloff
tCM, we derived an expression for the expected power envelope of the filtered
combined signal. We saw that target locations could be identified as local
maximum of this power envelope. Moreover, we showed that the same basic model
was also approprlate for the analysis of velocity-gate pulloff.

We then explored our model in more detail for the specific case in which
the transmitted signal could be represented by a gaussian pulse. We saw that
small deception delays resulted in biased estimates of target position;
however, as the delay was increased, a threshold was reached beyond which the
victim radar could resolve the jammer as a separate target, Now, in order for
the countermeasure to be successful, one must be able to move the apparent
target position sufficiently far from the true position that the victim radar
cannot keep both the true and biased positions within its range-gate. As one
might have expected, the determining factors as to whether this can be
accomplished appear to be the pulse width of the transmitted signal, and the
signal-to-jammer power ratio (calculated at the receiver).

A number of possibilities exist for extending or enhancing this model.
For example, at the moment the additive deception signal is restricted to an
amplified and delayed version of the signal transmitted by the radar. One
could allow a more general type of deception, such as one which included
variations in the pulse width. Indeed, one could go so far as to consider an
adaptive jammer which constructs a jamming signal (based on the measured
transmitted waveform) designed to induce the maximum deception in the victim
radar. Needless to say, we suspect this problem would prove to be very
difficult. Another direction might be to attempt a simultaneous solution of
the range-gate and velocity-gate problems; reformulating the model in terms of
the ambiguity function would be a possible approach. One might also wish to
add a more realistic description of the dynamics of the victim radar, or
include a model of the observer needed by the ECM system to measure the
parameters of the transmitted signal.

We caution the reader once again that this paper is aimed primarily at
these who want to do a "top level™ analysis of the effectiveness of the
range-gate pulloff ECM, particularly simulation designers. We should also
polnt out that there are some obvious limitations which must be considered
before applying these results to specific problems. For example, this model
would certainly not be an appropriate one for describing a tracking gate which
used sophisticated signal processing. Also, it 1s important to bear in mind
that this model describes signals by theilr statistical averages; consequently,
one should not attempt to draw conclusions about the pulse-by-pulse behaviour
of such systems from this analysis. However, used carefully in the context
for which it was intended, we believe that our model can prcvide a useful tocol
for the FW systems analyst.

Wy e e e ot of r"; o

LI N

2
‘g1 v r

T

'l

PR Y
(2w T S e 4

)




'_.‘
[ESEREARN
“

‘@
—

', .'v "I

.
S e
[ A

1S
w

[ 4

=1

e

Pd

- . -t P
. e e e e o Z o A
A PR T T
- g, o e e T e
* .‘,'.‘.‘._. . PP

- -~

)
3 L,)

-
[d
LAl ALY

g - -

4 &

-

Fo

ol o oy
AL
N

RN

5.)‘:

» [y
et

* ry
€ a
v s

»
)

. Ry
[} 1 1,4
‘)'1.'1'1}% s P

7
$A

@
&5

. .‘l I'l 4

; S5

44

PARAINA D! RLALAL A

S NS

®
f‘;“f_ ¢ 4@y
- S VS

AN |

7.0

- 22 -

REFERENCES

Leroy B. Van Brunt, "Applied ECM", Volume 1, EW Engineering, Inc., Dunn
Loring, Va., 1978.

Harry L. Van Trees, "Detection, Estimation, and Modulation Theory”, Part
III, John Wiley and Sons, Inc., New York, 1971.

F.W. Symons, Private Communication, February, 1984

J-P. Aubin, "Applied Functional Analysis”, John Wiley and Sons, Inc., New
York, 1979,




NN R 2
Mt A v e 4
L S A . S P

o

)
'l

@ e e

- g
LA NI

oy
e

s
a

N TS

- -

‘a @221

aa

v
PSR |
‘
.

- A-1 -

APPENDIX A

COMPUTER I 'OGRAMS

The numerical results used in this paper (which appear primarily in the
graphs) were generated by programs written in the APL programming language
using a DEC-2020 minicomputer. In this appendix we will briefly describe each
of these programs; these descriptions will be followed by a comprehensive

listing.

(a)

(b)

(c)

(d)

CHANGE: CHANGE accepts a boolean vector (i.e. one consisting of
0's and 1's), which we will denote by (ay, aj,....a,), as

an argument. It returns a vector of indices 1 corresponding to
those ay which satisfy ay # ay-j.

INV: INV is an infix function which takes as its first argument
the name of the function to be inverted. The second argument is
a three element array composed of the value at which the inverse
function is to be evaluated followed by the interval over which
the inverse is to be calculated. That is,

£ INV (x,a,b) £~1(x) for x. f(la,b])

= ¢ for x¢ f(la,b])

Note that f~1(x) may be set-valued. The basic algorithm used

to compute the inverse function is quite simple. The interval
[a,b] is subdivided into a number of intervals [ay, by], and

the program checks to see if x f([ay, by]). If it is, the
process 1s repeated until the size of the subinterval(s) is less
than a pre-selected tolerance.

Gl : Gl is the function defined by (4.15), {i.e.

gp (Y = 1-7 exp - C - 1)

Since g has asymptotes at 0 and 1, traps are set to catch
these values.

G2: G2 is the function defined by (4.20), {.e.

g2 (x) = exp x% -

1
—
V2K

RSN

Since g9 has an asymptote at 0, a trap is set to catch small
values of x.
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W
i” 1 (e) G3: G3 is an infix representation of the function defined by
- ex (4.29), i.e.
~.~\~?
NN .
R (T,/Tg) G3 = g3(Tp3" )
B where
b o,
‘) 2 (»
i g3(Tys 7) = 1-  exp {2(T,/Tg)* (F - 1)y
"_\‘: G 2
N
;;f; Note that the asymptote at 0 is trapped.
N
Ty
S (£) G4: G4 1s the function defined by (4.30), 1i.e.
\:."
[ g4 (+) = &t =g3(Te()3™), o ¢ 81 (M)}
-
:u;.
- G4 can accept vector—valued arguments; however, since G4 works by

invoking INV, the input vector is disassembled, the inverse is
calculated for each scalar that results, and the answer is
assembled into an output vector. Note that any function which
invokes INV 1s accompanied by a SUSPEND block which returns
PR control to the user if INV returns the empty set or multiple
K values. Often this happens because of numerical considerations
even when the inverse function exists and is single-valued.
¢ Rather than provide complicated code to deal with such problems,
f{j it is easier when using an interpreter like APL to return control
4
4

:: to the user and let him sort out the difficulty.
:) (g) SOLUTION: SOLUTION finds the values of Ty, and topt (as
on defined by (4.32)) which correspond to vargous values of
AN (Eg/Eq) ranging from -50 to 50 dB. LOOPA solves part (1) of
i(g- (4.32), and LOOPB solves part (1i). Note the presence of the
o SUSPEND block once again since INV 1s invoked frequently.
A

.'\:::

o
'-- ':;\.

o

oo

v

Y

T
G

\ L)
A

)

ol
,]}?uvhv AR A N T e AN N T T T T Y L S

D R P . . - .
7 N AT L . . st AR s
. - d > - ',-\' - - . o Il < -
NI P T o LN 2 BT A SR I

’ 080,



> 7/
AR

v,
e

W A AP

“y

45y

o~y

»
.

9 Y INDEX<«CHANGE MASK;I;J ;SAVEMASK ;FLAG |
N (11 A -
™ (21 A MASK IS A VECTOR OF 0'S AND 1'S :
o~ [3] A CHANGE FINDS INDICES CONTAINING VALUES WHICH 4
‘ [4] a DIFFER FROM PRECEDING VALUE 3

. (5] A 4
o [61] INDEX<«10:;MASK+«MASK ,0;J«0;FLAG+0;SAVEMASK+MASK 3
- [7] LOOP:+(0=pMASK+(I+MASK11) ¥MASK) /EXIT '
o~ (8] INDEX+INDEX,I+J+ 14INDEX X
N [9] +>(0=pMASK+(J+MASK1 Q) ¥MASK) /EXIT N
§ [10]  +LOOP
. (11] EXIT:+(0xFLAG)/FINISH '
-, [12] J«C;INDEX«10;SAVEIN«INDEX ;MASK«(~SAVEMASK ), 0 LAG+1 :
B £13] +LOOP ]
K- - (14] FIKISH:INDEX<~(0=zINDEX)/INDEX+«SAVEIN,INDEX

- f1s] INDEX+((0SAVEMASK)=INDEX) /INDEX<«INDEX[AINDEX ]
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W w w w

B RR)

LA,

J.' -".‘:{ —(:'--.‘_;

T«FUNC INV VALUE LEFT RIGHT JUN XY \MASKINDEX ;OKNOTOK

T
4
A
T
4
o

rr,

KVERSE FUNCTION FOE FUNC EVALUATEL
T OF ARRAY VALUE. SECONL AND
NTS OF VALUE DEFINL INTERVAL

(g

™

= n

4

AR TR

o
3

Uy~ by
try
&
S
S+
==
3

[}

LA TS S =
by ln 'y

n M Uy =
Ty bE W
{ry

[95)
v

~3

CHECK TO SE& IF VALUE IS LEGAL FORMAT

D ®» P P D D DPD

+((pVALUE)=3) /ERROR

DEFINE LEFT AND RIGHT ENDFOINTS

» D p

T« V0 LEFT+141IVVALUE ;EIGHT« 1423 VALUE JUN+«((1101) +101),1;0L10+«C
YLOOF:X+10

h )

DEFINE X VECTOR; NOTE RIGHT, LEFT MAY BE VECTORS

g]

D

A
XLOOFP :X«X, (14LEFT)Y+UNx{(14RIGHT)-(1+LEFT))
LEFT«AYLEFT KIGHT«1+RIGHT
+((pLEFT)>0) /XLOOP
Y«eFUNC,"' X!
)
A USE CHANGE TO FIND INTERVALS WHOSE IMAGES
A CONTAIN FUNC(I14VALUE)
A
INDEX«CHANGE MASK<«(14VALUE)<Y
A
A DEFINE NEW LEFT ,RIGHT VECTORS ;CHECK
R SIZE QOF NEW INTERVALS AGAINST TOLERANCE
A
RIGHT+X[INDEX],;LEFT«X[ 1+INDEX]
OK+«TOLERANCE2|-/Q(2,(pRIGHT ))p(RIGHT ,LEFT)
T« ,X[OK/INDEX]
NOTOK«(~0K)/(pRIGHT)
RIGHT«RIGHTINOTOK]);LEFT+«LEFT[NOTOK]
+(0<pRIGHT)/YLOOP
+0
ERROE :B«' WRONG FORMAT FOR INPUT'
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T«G1 G;INDEX ;MASK 5172E

A

a IMPLEMENTS FUNCTION G1

A INCLUDES TRAPS FOk UNDEFINED VALUES NEAR O AND
A

INDEX+(~MASh«( (LOWEF+G<0.001)+(UPPEF+G20.99))) /1

G+GLINDEX] }
Te(~MASKIN((1-G)+G)x*(T1+2x5)+(2xGx(1-G))
T( (UPPER)/1SIZE]+1.00E10

I LOWER/\SIZE]+0

G2 X3INDEX ;MASK;;SIZE

IMPLEMENTS FUNCTION G2
INCLUDES TRAPS FOR UNDEFINED VALUE NEAR O
AND FLOATING POINT OVERFLuW =5

D » D DD

INDEX+(~MASK«((X<1.00E710)+(X25)))/\S1ZkepX+,X
X«X[INDEX]

Te(~MASKIN(*(T0.5+XxX))4(Xx2*0.5)
TL(MASK)/\SIZE]+«1.00E10

T+«BFlA G3 G;INDEX ;MASK;SIZE;G1;Z2ERQO
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